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We demonstrate for a generic pseudointegrable billiard that the number of periodic orbit families with length
less thanl increases aspb0l

2/^a( l )&, whereb0 is a constant and̂a( l )& is the average area occupied by these
families. We also find that̂a( l )& increases withl before saturating. Finally, we show that periodic orbits
provide a good estimate of spectral correlations in the corresponding quantum spectrum and thus conclude that
diffraction effects are not as significant in such studies.@S1063-651X~96!52108-2#

PACS number~s!: 05.45.1b, 03.65.Sq

Billiards are an interesting and well studied class of
Hamiltonian systems that display a wide variety of dynami-
cal behavior depending on the shape of the boundary. Of
these, pseudointegrable billiards form a subclass and these
correspond to rational angled polygonal shaped enclosures
with a particle reflecting specularly from the walls@1#. They
possess two constants of motion like their integrable coun-
terparts@2# but the invariant surface is topologically equiva-
lent to a sphere with multiple holes@1# and not a torus. As an
example, consider the billiard in Fig. 1. For any trajectory,
px
2 and py

2 are conserved. The invariant surface consists of
four sheets~copies! corresponding to the four possible mo-
menta (6px ,6py) that it can have and the edges of these
sheets can be identified such that the resulting surface has the
topology of a double torus.

The classical dynamics no longer has the simplicity of an
integrable system where a transformation to action and angle
coordinates enables one to solve the global evolution equa-
tions on a torus. On the other hand, the dynamics is noncha-
otic with the only interesting feature occurring at the singular
vertex with internal angle 3p/2. Here, families of parallel
rays split and traverse different paths, a fact that limits the
extent of periodic orbit families. This is in contrast to inte-
grable billiards~and to thep/2 internal angles in Fig. 1!
where families of rays do not see the vertex and continue
smoothly.

We shall focus here on the periodic orbits of such systems
for they form the central object in modern semiclassical
theories@3#. Not much is, however, known about the manner
in which they are organized and the few mathematical results
that exist@4# concern the asymptotic properties of their pro-
liferation rate. For a subclass of rational polygons where the
vertices and edges lie on an integrable lattice~the so called
almost-integrable systems@4#!, these asymptotic results are
exact. It is known, for example, that the number of periodic
orbit families ~those which have an even number of
bounces!, N( l ), increases quadratically with length,l , as
l→`. For general rational polygons, rigorous results provide
bounds onN( l ) though it is believed thatN( l ); l 2 even in
these cases@4,5#. Numerical verifications of these results are

few and perhaps none exist for a general rational polygon
that does not belong to the category of almost-integrable
systems. Besides, very little is known about other aspects
such as the sum rules obeyed by periodic orbits in contrast to
the integrable and chaotic limits where these have been well
studied@6#.

It is not surprising then that periodic orbit theories for
polygonal billiards have met with little success, both in
quantizing individual levels@7,8# and in explaining the cor-
relations in the quantum spectrum@9#. We shall not deal with
the question of determining individual levels here, but
merely point out that agreement with the smeared quantum
density of states has been observed using complex energies
@7,8# although alternate convergent schemes~such as cycle
expansions in chaotic systems@10#! are indeed desirable for
better resolution of individual levels. In this sense, the full
scope of periodic orbit quantization in such systems is
largely unknown, even though several researchers have now
looked beyond geometric periodic orbit contributions and
found evidence of diffractive corrections@11#.

Correlations, on the other hand, are related to sum rules
obeyed by periodic orbits and these are robust quantities that
do not suffer from acute convergence problems. We thus
focus on the problem of computing correlations in the quan-
tum spectrum using geometric periodic orbits. Further, our
results indicate that these estimates are good, indicating that
diffraction effects are not as significant in studies involving
the statistical properties of the spectrum@12#. To appreciate
this finding however, it is necessary to study the sum rules
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FIG. 1. A pseudointegrable billiard. Periodic orbit families are
restricted in extent by the singular (3p/2) vertex.
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obeyed by periodic orbit families and show that there are
important differences from the integrable case contrary to
what can be expected from the asymptotic properties of
N( l ) @8#. To this end, we first verify that periodic orbits in a
generic pseudointegrable system obey the sum rule@13#
^(p( r51

` apd( l2rl p)/(rl p)&52pb0, whereb0 is a constant,
^ & denotes the average value,l p is the length, andap the area
of a primitive periodic orbit family. This establishes the pro-
liferation law, N( l )5pb0l

2/^a( l )&, derived in @13# where
^a( l )& is the average area occupied by families having
lengthsrl p< l . Further, we explore the behavior of^a( l )& as
a function of length,l , and find that it increases initially
before saturating to a value much smaller than the maximum
possible area spanned by a single family. The proliferation
law, N( l ), is thus quadratic only asymptotically and the
number of orbits is much larger than that of an equivalent
integrable system with the same area. For smaller lengths,
N( l ) is subquadratic and this is significant for a two-point
correlation of the quantum spectrum that we study and for
which we demonstrate that periodic orbits provide accurate
estimates.

The L-shaped billiard of Fig. 1 that we choose has ap-
proximately unit area and has no periodic orbit with an odd
number of bounces at the boundary. It does not belong to the
class of almost-integrable billiards and is generic in the sense
that all sides are irrationally related and periodic orbit
lengths are nondegenerate. Unlike some degenerate cases@7#
where periodic orbits can be labeled by two integers~analo-
gous to the winding numbers in two-dimensional integrable
systems!, orbits in genericL-shaped billiards are described
by a set of four integers though not every point on the four-
dimensional lattice corresponds to a real periodic orbit. This
makes it difficult to study sum rules from purely classical
considerations. An alternate approach adopted in@13# uses
the semiclassical trace formula which expresses the density
of quantum energy eigenvalues in terms of periodic orbits
@1#:

(
n

d~E2En!5dav~E!1
1

4p(
p

(
r51

`

apJ0~krl p! ~1!

whereJ0 is a Bessel function,$En% anddav(E) are the quan-
tum energy eigenvalues and their average density respec-
tively, and k5AE @14#. For convenience, we have chosen
the mass,m51/2 and\51. Starting with

g~ l !5(
n

f ~AEn;b!5E
e

`

dE f~E;b!(
n

d~E2En! ~2!

wheref (AE;b)5J0(AEl)e2bE and 0,e,E0, it is possible
to show using Eq.~1! that forb→01:
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r51

`
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rl p

d~ l2rl p!52pb012p(
n

J0~AEnl ! ~3!

whereb05(p( r51
` (ap /4p)*0

edE J0(AEl)J0(AErl p).
It is argued in@13# that b0 is a constant and we demon-

strate this here by plottingS( l )5(p( r(ap /rl p) in Fig. 2
where the summation is restricted to all periodic orbits with
rl p< l . It follows from Eq. ~3! thatS( l ).2pb0l .

Figure 2 shows the behavior ofS( l ) for a rectangular
~integrable! and anL-shaped~pseudointegrable! billiard. In
the former case, the orbit lengthsl p can be expressed in
terms of the winding numbers (M ,N) on the torus@15,16#
while the areas$ap% are four times the area,A, of the billiard
except for bouncing ball orbits for which they are twice the
area. For the pseudointegrable billiard, both the lengths and
areas are determined numerically using two different meth-
ods. We illustrate one of these by first noting that one mem-
ber of each periodic orbit family encounters the singular ver-
tex. Further, a nonperiodic orbit originating from the same
point but with a momentum slightly different from a periodic
orbit suffers a net transverse deviation that equals
(21)nfsin(f2fp)lf . Here lf is the distance traversed by a
nonperiodic orbit at an anglef afternf reflections from the
boundary andfp is the angle at which a periodic orbit exists.
These facts can be used to converge on periodic orbits rap-
idly and the method works for other polygonal billiards. De-
tails of this and the other method employed can be found in
@17#.

Note that in both cases the curves in Fig. 2 are linear as
expected from Eq.~3!. For the integrable case,b050.25,
while for the pseudointegrable billiardb0.0.27@18#. This is
the first difference between the two cases. The higher value
for the pseudointegrable billiard is possibly due to the fact
that at the singular vertex, there can exist more than one
periodic orbit with the same value offp . It could also reflect
diffraction effects that have been neglected in Eq.~1!. These
issues will be discussed in a future publication@17#.

It is clear then that the leading term for the counting func-
tion, N( l ), is pb0l

2/^a( l )& with corrections provided by the
the quantum energy eigenvalues. This result holds for all
rational polygons including those which are neither inte-
grable nor almost integrable. Here the average projected
phase space area^a( l )&[((p( rap)/N( l ) where the summa-
tion extends over all orbits withrl p< l . For rectangular bil-
liards, ^a( l )&.4A and this gives the quadratic law for
N( l ) @3,16#. For pseudointegrable billiards, we plot^a( l )& in
Fig. 3. The saturation for largel impliesN( l ); l 2 asymptoti-
cally @4#. For smaller values ofl , ^a( l )& increases, indicating
a ~local! subquadratic law forN( l ) that we have indeed veri-
fied.

FIG. 2. The functionS( l )5(p( r(ap /rl p) for a rectangular and
a pseudointegrable~upper curve! billiard. The sum is restricted to
orbits with rl p< l .
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Note that the maximum area,amax, occupied by a family
is four times the area of the billiard since the invariant sur-
face consists of four sheets corresponding to the four pos-
sible momenta a trajectory can have. The value at which
^a( l )& saturates is thus far smaller thanamax. Hence the
density of orbit lengths for the pseudointegrable billiard is
far in excess of an equivalent integrable billiard having the
same area.

With these findings on periodic orbits, we now turn to the
statistical analysis of the quantum spectra. A commonly used
measure is the spectral rigidityD(L) defined as@19#

D~L !5Kmin
a,b

dav
L E

2L/2dav

L/2dav
@N~E01E!2a2bE#2dEL ~4!

whereN(E) counts the number of eigenvalues,E0 is the
energy at which the measure is evaluated, and^ & is an aver-
aging in energy over scales larger than the outer scale@15#
determined by the slowest frequency of oscillation in Eq.~1!.
It is possible to analyze the rigidity in terms of periodic
orbits using Eq.~1! and the basic semiclassical expression
for the rigidity is then@15#

D~L !5K (
i

(
j

AiAj

TiTj
cos~Si2Sj !Hi j L ~5!

where the summations extend over all periodic orbits@20#,
Ai5(aj

2/32p3l iAE0)
1/2, Ti5]Si /]E evaluated atE0 and

Si5AE0l i . The function Hi j5F(yi2yj )2F(yi)F(yj )
23F8(yi)F8(yj ) whereyi5LTi /2dav andF(y)5sin(y)/y.

For L!2pdav /Tmin and largeE0, Eq. ~5! can be simpli-
fied further to yield@15#

D~L !5
1

2p2E
0

` dt

t2
K~t!G~pLt! ~6!

where G(y)512F2(y)23F82(y), t5T/(2pdav), K(t)
52pf(T)/dav and

f~T!5K (
i

(
j
AiAjcos~Si2Sj !d„T2~Ti1Tj !/2…L . ~7!

Equation~6! is useful for analytical studies only when the
collective properties of periodic orbits as embodied in

f(T) are known. A first step in this direction is the diagonal
approximation@15# for small T based on the fact that orbit
pairs have large action differences and hence off-diagonal
terms do not survive averaging. The diagonal sum
fD(T)5^( iAi

2d(T2Ti)& is, however, unknown for generic
pseudointegrable systems, though on treating the area,ai , as
constant and using the asymptotic law,N( l ); l 2, one might
infer that fD(T) is constant@8# as in integrable systems
@15,6#. These assumptions are, however, incorrect especially
for values ofT where the diagonal approximation is expected
to be valid. We shall therefore investigate this numerically.

For largeT, off-diagonal contributions are generally im-
portant and more difficult to estimate@21#. For integrable
systems where the density of orbit lengths is small, off-
diagonal contributions vanish even for largeT @15#. One
might expect this to be true even in the pseudointegrable
situation due to similarities in the asymptotic proliferation
laws though it must be noted that the density in the pseudo-
integrable case is larger compared to an equivalent integrable
system having the same area.

In Fig. 4, we plot the functionI (t)5*0
tK(t8)dt8 ~upper

curve! as well the diagonal partI D(t)5*0
tKD(t8)dt8. The

fact thatI D(t) and I (t) coincide untiltc.0.42 implies that
off-diagonal terms do not contribute fort,tc . The diagonal
approximation thus provides a good estimate ofK(t) for
short times@22#.

FIG. 5. The spectral rigidityD(L) for theL-shaped billiard. The
lower curve is evaluated using periodic orbits while the diamonds
are the values computed directly using energy eigenvalues. The
straight line above is the Poisson result (L/15).

FIG. 3. The average area,^a( l )&, as a function of orbit length.
Note the saturation for long lengths.

FIG. 4. A plot of I (t)5*0
tK(t8)dt8 ~upper curve! along with

the diagonal part. Note the crossover attc.0.42 where off-
diagonal terms begin to contribute.
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The important departure@as far asD(L) is concerned#
from integrable behavior lies in the fact thatI D(t) displays
variations in slope fort<tc indicating thatKD(t) is not a
constant@23#. For t.tc , KD(t) is constant but has a value
much smaller than unity@for integrable systemsKD(t)51
for all values oft#. Of significance as well is the nonvanish-
ing contribution of the off-diagonal part@ I (t)2I D(t)# for
t.tc . In this example a power law proliferation of periodic
orbits gives rise to nonzero off-diagonal contributions in the
form factor.

Finally, we compute the spectral rigidity using Eq.~5!
with 6621 periodic orbits and estimate the contribution of the
longer ones using Eq.~6! and an interpolation forK(t). The
result is displayed in Fig. 5 where we also plotD(L) ob-
tained numerically using the quantum eigenvalues. The
agreement is remarkably good leading to the conclusion that
diffraction effects are not as significant for the statistical
properties of the spectrum.

In summary, we have brought to light several interesting
properties of periodic orbits in pseudointegrable billiards and
numerically established that periodic orbits provide good es-
timates of spectral correlations even when diffraction plays a
role. Our specific conclusions are the following.

~i! Orbit families obey the sum rule
^(p( r51

` apd( l2rl p)/(rl p)&52pb0 thereby giving rise to
the proliferation lawN( l )5pb0l

2/^a( l )& for all rational
polygons.

~ii ! ^a( l )& increases initially before saturating to a value
much smaller thanamax; the asymptotic proliferation law is
thus quadratic even for systems that are not almost-
integrable and the density of periodic orbits lengths is far
greater than an equivalent integrable system having the same
area.

~iii ! The diagonal part of the form factorK(t) approaches
a constant att5tc and the value is much smaller than unity.
In contrast, the diagonal part in integrable systems is identi-
cally equal to 1.

~iv! Off-diagonal contributions inK(t) are nonzero for
t.tc even though the proliferation of periodic orbits is qua-
dratic as in integrable billiards.

~v! Periodic orbits provide good estimates of correlations
in the quantum spectrum.
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