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Periodic orbits and spectral statistics of pseudointegrable billiards
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We demonstrate for a generic pseudointegrable billiard that the number of periodic orbit families with length
less thanl increases asbgl2/(a(l)), whereby is a constant an¢ia(l)) is the average area occupied by these
families. We also find thata(l)) increases with before saturating. Finally, we show that periodic orbits
provide a good estimate of spectral correlations in the corresponding quantum spectrum and thus conclude that
diffraction effects are not as significant in such studi&€i.063-651X%96)52108-3

PACS numbeps): 05.45+b, 03.65.Sq

Billiards are an interesting and well studied class offew and perhaps none exist for a general rational polygon
Hamiltonian systems that display a wide variety of dynami-that does not belong to the category of almost-integrable
cal behavior depending on the shape of the boundary. Ofystems. Besides, very little is known about other aspects
these, pseudointegrable billiards form a subclass and theseich as the sum rules obeyed by periodic orbits in contrast to
correspond to rational angled polygonal shaped enclosurdke integrable and chaotic limits where these have been well
with a particle reflecting specularly from the walls|. They  studied[6].
possess two constants of motion like their integrable coun- It is not surprising then that periodic orbit theories for
terparts[2] but the invariant surface is topologically equiva- polygonal billiards have met with little success, both in
lent to a sphere with multiple hol¢s] and not a torus. As an quantizing individual level$7,8] and in explaining the cor-
example, consider the billiard in Fig. 1. For any trajectory,relations in the quantum spectrd®). We shall not deal with
p2 and p§ are conserved. The invariant surface consists ofhe question of determining individual levels here, but
four sheets(copies corresponding to the four possible mo- merely point out that agreement with the smeared quantum
menta (- py,*+p,) that it can have and the edges of thesedensity of states has been observed using complex energies
sheets can be identified such that the resulting surface has th&8| although alternate convergent schenigsch as cycle
topology of a double torus. expansions in chaotic systeffi0]) are indeed desirable for

The classical dynamics no longer has the simplicity of arpetter resolution of individual levels. In this sense, the full
integrable system where a transformation to action and anglgcope of periodic orbit quantization in such systems is
coordinates enables one to solve the global evolution equadargely unknown, even though several researchers have now
tions on a torus. On the other hand, the dynamics is nonchdeoked beyond geometric periodic orbit contributions and
otic with the only interesting feature occurring at the singularfound evidence of diffractive correctiofg1].
vertex with internal angle 8/2. Here, families of parallel Correlations, on the other hand, are related to sum rules
rays split and traverse different paths, a fact that limits theobeyed by periodic orbits and these are robust quantities that
extent of periodic orbit families. This is in contrast to inte- do not suffer from acute convergence problems. We thus
grable billiards(and to then/2 internal angles in Fig.)1 focus on the problem of computing correlations in the quan-
where families of rays do not see the vertex and continudum spectrum using geometric periodic orbits. Further, our
smoothly. results indicate that these estimates are good, indicating that

We shall focus here on the periodic orbits of such system§liffraction effects are not as significant in studies involving
for they form the central object in modern semiclassicalthe statistical properties of the spectrih2]. To appreciate
theorieg3]. Not much is, however, known about the mannerthis finding however, it is necessary to study the sum rules
in which they are organized and the few mathematical results
that exist[4] concern the asymptotic properties of their pro-
liferation rate. For a subclass of rational polygons where the
vertices and edges lie on an integrable lat{ite so called
almost-integrable systenid]), these asymptotic results are
exact. It is known, for example, that the number of periodic
orbit families (those which have an even number of ¥
bounceg N(I), increases quadratically with length, as
| — . For general rational polygons, rigorous results provide
bounds onN(l) though it is believed thal(l)~1? even in
these caselst,5]. Numerical verifications of these results are

x
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obeyed by periodic orbit families and show that there are 180
important differences from the integrable case contrary to
what can be expected from the asymptotic properties of
N(I) [8]. To this end, we first verify that periodic orbits in a
generic pseudointegrable system obey the sum [Lg}
(ZpZr_qaps(I—rlp)/(rlp))=2mh,, wherebg is a constant, g4y g9
() denotes the average valugis the length, and,, the area
of a primitive periodic orbit family. This establishes the pro-
liferation law, N(1)=mbgl?/(a(l)), derived in[13] where
(a(l)) is the average area occupied by families having
lengthsrl <I. Further, we explore the behavior @(l)) as 0 ,
a function of lengthl, and find that it increases initially 0 50 100
before saturating to a value much smaller than the maximum !
possible area spanned by a single family. The proliferation
law, N(I), is thus quadratic only asymptotically and the . e . .
number of orbits is much larger than that of an equivalenﬁrgﬁslﬂ?ﬁﬂﬁei‘?blmpper curvg billiard. The sum is restricted to
integrable system with the same area. For smaller lengths, P
N(I) is subquadratic and this is significant for a two-point
correlation of the quantum spectrum that we study and for Figure 2 shows the behavior &(1) for a rectangular
which we demonstrate that periodic orbits provide accuratéintegrable and anlL-shaped(pseudointegrabebilliard. In
estimates. the former case, the orbit lengths can be expressed in
The L-shaped billiard of Fig. 1 that we choose has ap-terms of the winding numbers\{,N) on the torug 15,16
proximately unit area and has no periodic orbit with an oddwhile the areaga,} are four times the ared, of the billiard
number of bounces at the boundary. It does not belong to thexcept for bouncing ball orbits for which they are twice the
class of almost-integrable billiards and is generic in the sensgrea. For the pseudointegrable billiard, both the lengths and
that all sides are irrationally related and periodic orbitareas are determined numerically using two different meth-
lengths are nondegenerate. Unlike some degenerate[ddses ods, We illustrate one of these by first noting that one mem-
where periodic orbits can be labeled by two integ@msalo- e of each periodic orbit family encounters the singular ver-
gous to the winding numbers in two-dimensional integrableey Fyrther, a nonperiodic orbit originating from the same

Eystem}s, (;r?its in generiill_-sh?]ped billiards are desr(]:ritf)ed point but with a momentum slightly different from a periodic
y a set of four integers though not every point on the four-, vy o\ ffers a4 net transverse deviation that equals

dimensional lattice corresponds to a real periodic orbit. Thig 7 yn, . ;

makes it difficult to study sum rules from purely ClaSSicafE]onl)erisclgi(?or(tb)pi’t)lgt. ;e;il “i ;Sag]eerr?lsi?lgitité?}\;efi?‘g ttr)]ia

considerations. An alternate approach adoptefilB] uses P . 9 ¢ o L
undary andp, is the angle at which a periodic orbit exists.

the semiclassical trace formula which expresses the densi h ; b d iodic orbi
of quantum energy eigenvalues in terms of periodic orbits' "eS€ facts can be used to converge on periodic orbits rap-

T

FIG. 2. The functior§(1) =2 ,2(a,/rl ) for a rectangular and

[1]: idly and the method works for other polygonal billiards. De-
tails of this and the other method employed can be found in
1 *© [17].
> S(E—E,)=d,,(E)+ EZ 21 apdo(krly) (D) Note that in both cases the curves in Fig. 2 are linear as
n p r=

expected from Eq(3). For the integrable casdy,=0.25,
while for the pseudointegrable billiafth=0.27[18]. This is

[,p_e first difference between the two cases. The higher value
for the pseudointegrable billiard is possibly due to the fact
that at the singular vertex, there can exist more than one
periodic orbit with the same value gf, . It could also reflect

- diffraction effects that have been neglected in 8. These
gh=2> f(\/E—n:ﬁ)IJ dE f(E;8)>, 8(E—E,) (2 issues will be discussed in a future publicat[d].

" € : It is clear then that the leading term for the counting func-
tion, N(I), is wbgl?/{a(l)) with corrections provided by the
the quantum energy eigenvalues. This result holds for all
rational polygons including those which are neither inte-

o grable nor almost integrable. Here the average projected
> ﬁgﬂ_” y=2mby+27>, Jo(VEL) (3 phase space aréa(l))z('EpE,'ap)/N(l) where the summa-

P i=1rlp P n tion extends over all orbits withl ,<I. For rectangular bil-

liards, (a(l))=4A and this gives the quadratic law for
whereby=3,=7_(a,/47) [§dE Jo(VEI)Io(VETI ). N(l) [3,16]. For pseudointegrable billiards, we pl@t(l)) in
It is argued in[13] thatb, is a constant and we demon- Fig. 3. The saturation for largeimpliesN(I) ~12? asymptoti-
strate this here by plotting(1)==,X(a,/rl,) in Fig. 2  cally [4]. For smaller values df, (a(l)) increases, indicating
where the summation is restricted to all periodic orbits witha (local) subquadratic law foN(l) that we have indeed veri-
rl,=<I. It follows from Eq.(3) that S(I)=2mbl. fied.

whereJ, is a Bessel functiod,E,} andd,,(E) are the quan-
tum energy eigenvalues and their average density respe
tively, and k= \E [14]. For convenience, we have chosen
the massm=1/2 andA=1. Starting with

wheref (\E; B)=Jo(VEl)e #E and 0< e<E,, it is possible
to show using Eq(1) that for 3—0":
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FIG. 3. The average areé(l)), as a function of orbit length. FIG. 4. A plot of I(7)=JoK(7")d7" (upper curvg along with
Note the saturation for long lengths. the diagonal part. Note the crossover at=0.42 where off-

diagonal terms begin to contribute.

Note that the maximum areamay, occupied by a family ¢(T) are known. A first step in this direction is the diagonal

is four times the area of the billiard since the invariant Sur'approximation[lS] for small T based on the fact that orbit

];?EE C;gff'}?fﬂ;g?;.:gg?ts cc;r:rizgznd#]% t\c/)afﬂg gotu\:vﬁgfﬁiairs have large action differences and hence off-diagonal
J y ' erms do not survive averaging. The diagonal sum

(a(l)) saturates is thus far smaller than,,,. Hence the N A2 ST TN ;
density of orbit lengths for the pseudointegrable billiard s (T =(ZiATS(T—T)) is, however, unknown for generic

far in excess of an equivalent integrable billiard having thepseudomtegrablt_a systems, thoug_h on treatlnzg the aeas
same area. constant and using the asymptotic laM{l)~1<, one might

With these findings on periodic orbits, we now turn to theinfer that ¢p(T) is constant[8] as in integrable systems

statistical analysis of the quantum spectra. A commonly use 5.6. These assumptions are, however, incorrect especially

; o : or values ofT where the diagonal approximation is expected
measure is the spectral rigidity(L) defined a419] to be valid. We shall therefore investigate this numerically.

d,, (L/2da For largeT, off-diagonal contributions are generally im-
A(L)=<min T [N(Eqo+ E)—a—bE]sz> (4 portant and more difficult to estimaf®1l]. For integrable
ab ~L/2dgy systems where the density of orbit lengths is small, off-

diagonal contributions vanish even for large[15]. One
might expect this to be true even in the pseudointegrable
situation due to similarities in the asymptotic proliferation
laws though it must be noted that the density in the pseudo-
integrable case is larger compared to an equivalent integrable
system having the same area.

In Fig. 4, we plot the function(7) = [oK(7')d7" (upper
curve as well the diagonal patty(7)=[gKp(7')d7'. The

where N(E) counts the number of eigenvaluds, is the
energy at which the measure is evaluated, @nis an aver-
aging in energy over scales larger than the outer 4ddg
determined by the slowest frequency of oscillation in &g.

It is possible to analyze the rigidity in terms of periodic
orbits using Eq.1) and the basic semiclassical expression
for the rigidity is then[15]

AA, fact thatl (7) andl(7) coincide until7,=0.42 implies that
A(L)=( X X ==cogS—S)H;; (5)  off-diagonal terms do not contribute fer 7.. The diagonal
¥ T T, e . .
approximation thus provides a good estimateKdfr) for
where the summations extend over all periodic orp2g], short times{22].
A= (af32m\Eg) M, T;=3S/JE evaluated atE, and 08 N
S=\Eol;. The function Hij=F(yi—y;)) —F(y)F(y;) 0.7
—3F'(yi))F'(y;) wherey;=LT,;/2d,, andF(y)=sin(y)/y. 06
For L<2wd,, /Ty, and largeE,, Eq. (5) can be simpli- '
fied further to yield[15] 0.5
A(L) 0.4
1 (=dr
A(L)=—2f —K(7)G(7L ) (6) 03
27w ) T
0.2
where G(y)=1—F2(y)—3F'2(y), 7=T/(27dy,), K(7) 0.1
=27T¢(T)/dav and 0 1 I ! I I L ! I L

T)= AACOSS—S)T—(T,+T)/2)). (7
¢(1) <E|§,: ACOIS =5) ST =(Ti+T)/2) ). (@) FIG. 5. The spectral rigidity\ (L) for the L-shaped billiard. The

) _ ) _ lower curve is evaluated using periodic orbits while the diamonds
Equation(6) is useful for analytical studies only when the are the values computed directly using energy eigenvalues. The
collective properties of periodic orbits as embodied instraight line above is the Poisson resuli15).
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The important departurgas far asA(L) is concernedl (i) Orbit  families obey the  sum rule
from integrable behavior lies in the fact thay(7) displays (2,27 ja,6(1—rl)/(rl,))=2mb, thereby giving rise to
variations in slope forr= 7. indicating thatKp(7) is not a  the proliferation lawN(l)=wbyl?/(a(l)) for all rational
constan{23]. For 7>, Kp(7) is constant but has a value polygons.
much smaller than unityfor integrable system&p(7)=1 (i) (a(l)) increases initially before saturating to a value
for all val_ues_ ofr]. Of S|gn|f|c_ance as well is the nonvanish- uch smaller tham,,,; the asymptotic proliferation law is
ing contribution of the off-diagonal paft (1) —Ip(7)] for  thys quadratic even for systems that are not almost-
7>1¢. In this example a power law proliferation of periodic jntegrable and the density of periodic orbits lengths is far
orbits gives rise to nonzero off-diagonal contributions in thegreater than an equivalent integrable system having the same
form factor. area

Finally, we compute the spectral rigidity using E®) (iii) The dia
: o . : e gonal part of the form factét(r) approaches
with 6621 periodic orbits and estimate the contribution of thea constant at=r, and the value is much smaller than unity.

longer ones using E@6) and an interpolation foK (7). The In contrast. the diagonal part in intearable tems is identi-
result is displayed in Fig. 5 where we also plb{L) ob- cally equZI’to 1 'ag part in integr Systems 1s | I

tained numerically using the quantum eigenvalues. The (iv) Off-diagonal contributions irK(7) are nonzero for

Zgﬁreerpent '?f re{narkably ?OOd I?ad.]'c.ng t? ';he (t:r?nclttjs;p?_ thlaTt> 7. even though the proliferation of periodic orbits is qua-
iffraction effects are not as significant for the statistical y .. 2<'in integrable billiards.

properties of the spectrum. . . . (v) Periodic orbits provide good estimates of correlations
In summary, we have brought to light several interestin
. o S ; o %n the quantum spectrum.
properties of periodic orbits in pseudointegrable billiards an
numerically established that periodic orbits provide good es- It is a pleaSU(e to acknowledge useful discussions with
timates of spectral correlations even when diffraction plays &redrag CvitanovicBertrand Georgeot, Gregor Tanner, and

role. Our specific conclusions are the following. Niall Whelan.
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